Sensitivity of the Warm Rain Process in Convective Clouds to Regional Climate Change in the Contiguous U.S.

Cecille Marie Villanueva-Birriel, Sonia Lasher-Trapp, Robert J Trapp, Noah Diffenbaugh


The hypothesis of an increase of the warm rain process within deep convective clouds under anthropogenic climate change is tested. A 1D warm rain microphysical model that represents the core of the clouds is run with past and future thermodynamic profiles derived from a global climate model and local aerosol estimates. The depth from the cloud base to the freezing level increases substantially in the future clouds. However, an arid environment, a faster updraft speed, or higher amounts of cloud condensation nuclei (CCN) can offset this effect, diminishing or preventing the expected increase in warm rain formation. The future clouds in some regions also exhibit a decreased sensitivity to CCN. These experiments illustrate that a universal assumption of a more active warm rain process in a warmer future climate is inappropriate. Future precipitation enhancement is likely to occur in regions where the warm rain process is currently marginally productive.


warm rain process; convective clouds; microphysics; precipitation; climate


Allan, R. P., & Soden, B. J. (2008). Atmospheric warming and the amplification of precipitation extremes. Science, 321, 1481–1494. doi: 10.1126/science.1160787

Auer, A. H., Jr., (1975). The production of cloud and Aitken nuclei by the St. Louis metropolitan area (Project METROMEX). J. Rech. Atmos., 9, 11–22.

Baeck, M. L., & Smith, J. A. (1998). Rainfall estimation by the WSR-88D for heavy rainfall events. Wea. Forecasting, 13, 416–436.<0416:REBTWF>2.0.CO;2

Berg, P., Moseley C., & Haerter J. O. (2013). Strong increase in convective precipitation in response to higher temperatures. Nature Geoscience, 6, 181–185. doi:10.1038/ngeo1731

Bluestein, H. B., McCaul E. W., Byrd G. P., Woodall G. R. (1988) Mobile Sounding Observations of a Tornadic Storm near the Dryline: The Canadian, Texas Storm of 7 May 1986. Mon. Wea. Rev., 116, 1790–1804.<1790:MSOOAT>2.0.CO;2

Braham, R. R., Jr. (1974). Cloud physics of urban weather modification—A preliminary report. Bull. Amer. Meteor. Soc., 55, 100–106.

Brooks, H. E., Lee J. W., & Craven J. P. (2003). The spatial distribution of severe thunderstorm and tornado environments from global reanalysis data. Atmos. Res., 67-68, 73-94. doi:10.1016/S0169-8095(03)00045-0

Caracena, F., Maddox R. A., Hoxit L. R., & Chappell C. F. (1979). Mesoanalysis of the Big Thompson Storm. Mon. Wea. Rev., 107, 1–17.<0001:MOTBTS>2.0.CO;2

Cash, J. R., & Karp A. H. (1990). A variable order Runge–Kutta method for initial value problems with rapidly varying right-hand sides. ACM Transactions on Mathematical Software, 16, 201–222. doi:10.1145/79505.79507

Cooper, W. A., Bruintjes R. T., & Mather G. K. (1997). Calculations pertaining to hygroscopic seeding with flares. J. Appl. Meteor., 36, 1449-1469.<1449:CPTHSW>2.0.CO;2

Diffenbaugh, N. S., Scherer M., & Trapp R. J. (2013). Robust increases in severe thunderstorm environments in response to greenhouse forcing. Proc. Nat. Acad. Sci., 110, 16361–16366 doi: 10.1073/pnas.1307758110

Freud, E., & Rosenfeld, D. (2012). Linear relation between convective cloud drop number concentration and depth for rain initiation, J. Geophys. Res., 117, D02207. doi: 10.1029/2011JD016457

Frisbie, P. R., & Hudson, J. G. (1993). Urban cloud condensation nuclei spectral flux. J. Appl. Meteor., 32, 666–676.<0666:UCCNSF>2.0.CO;2

Fukuta, N., & Walter, L. A. (1970). Kinetics of hydrometeor growth from a vapor–spherical model. J. Atmos. Sci., 27,1160–1172.<1160:KOHGFA>2.0.CO;2

Golding, B. W., Clark P., & May B. (2005). The Boscastle flood: Meteorological analysis of the conditions leading to flooding on 16th August 2004. Weather, 60, 230–235. doi: 10.1256/wea.71.05

Heymsfield, A. J., Johnson D. N., & Dye J. E. (1978). Dye observations of moist adiabatic ascent in northeast Colorado cumulus congestus clouds J. Atmos. Sci., 35, 1689–1703.<1689:OOMAAI>2.0.CO;2

Hobbs, P. V., Politovich M. K., Bowdle D. A., & Radke L. F. (1978). Airborne studies of atmospheric aerosol in the High Plains and the structures of natural and artificially seeded clouds in eastern Montana. Cloud Physics Group Research Rep. 13, University of Washington.

_____, Bowdle D. A., & Radke L. F. (1985). Particles in the lower troposphere over the high plains of the United States. Part I: Size distributions, elemental composition, and morphologies. J. Climate Appl. Meteor., 24, 1344–1356.<1344:PITLTO>2.0.CO;2

Houze, R. A. (1977). Structure and dynamics of a tropical squall–line system. Mon. Wea. Rev., 105, 1540–1567.<1540:SADOAT>2.0.CO;2

Hudson, J. G., & Yum S. S. (2001). Maritime–continental drizzle contrasts in small cumuli. J. Atmos. Sci., 58, 915–926.<0915:MCDCIS>2.0.CO;2

Johnson, D. B. (1980). The influence of cloud base temperature and pressure on droplet concentration. J. Atmos. Sci., 37, 2079-2085.<2079:TIOCBT>2.0.CO;2

Junge, C. E., Robinson E., & Ludwig F. L. (1969). A study of aerosols in Pacific air masses. J. Appl. Meteorol, 8, 340–347.<0340:ASOAIP>2.0.CO;2

Kalnay, E., & co-authors (1996). The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437-471.<0437:TNYRP>2.0.CO;2

Karl, T. R., & Knight R. W. (1998). Secular trends of precipitation amount, frequency, and intensity in the United States. Bull. Amer. Meteor. Soc., 79, 231–241.<0231:STOPAF>2.0.CO;2

Kessler, E. (1969). On the distribution and continuity of water substance in atmospheric circulation. Meteorological Monographs 10, 84.

Konwar, M., Maheskumar R. S., Kulkarni J. R., Freud E., Goswami B. N., & Rosenfeld D. (2012). Aerosol control on depth of warm rain in convective clouds, J. Geophys. Res., 117, D13204. doi: 10.1029/2012JD017585

Kovetz, A., & Olund, B. (1969). The effect of coalescence and condensation on rain formation in a cloud of finite vertical extent. J. Atmos. Sci. 26, 1060 -1065.<1060:TEOCAC>2.0.CO;2

Lasher-Trapp, S. G., Anderson-Bereznicki S., Shackelford A., Twohy C. H., & Hudson J. G. (2008). An investigation of the influence of droplet number concentration and giant aerosol particles upon supercooled large drop formation in wintertime stratiform clouds. J. Appl. Meteor. Climatol., 47, 2659–2678.

Lau, K. M., & Wu H. T. (2007). Detecting trends in tropical rainfall characteristics, 1979–2003. Int. J. Climatol., 27, 979–988. doi: 10.1002/joc.1454

_____ & _____ (2011). Climatology and changes in tropical oceanic rainfall characteristics inferred from Tropical Rainfall Measuring Mission (TRMM) data (1998–2009), J. Geophys. Res., 116, D17111. doi: 10.1029/2011JD015827

Lindzen, R. S., Chour M.-D., & Hou A. Y. (2001). Does the earth have an adaptive infrared iris? Bull. Amer. Meteor. Soc., 82, 417-432.<0417:DTEHAA>2.3.CO;2

Maheshwari, R. C., & Mathur I. C. (1968). Radar reflectivity studies of Indian Summer Monsoon over Norhtwest India. Preprints 13th Radar Meteorology Conf., Montreal, Amer. Meteor. Soc., 98-103.

Mesinger, F., & co-authors (2006). North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343–360.

Musil, D. J., Heymsfield A. J., Smith P. L. (1986). Microphysical Characteristics of a Well-Developed Weak Echo Region in a High Plains Supercell Thunderstorm. J. Climate Appl. Meteor., 25, 1037–1051.<1037:MCOAWD>2.0.CO;2

Petersen, W. A., Carey L. D., Rutledge S. A., Knievel J. C., Johnson R. H., Doesken N. J., McKee T. B., Vonder Haar T., & Weaver J. F. (1999). Mesoscale and radar observations of the Fort Collins flash flood of 28 July 1997. Bull. Amer. Meteor. Soc., 80, 191–216.<0191:MAROOT>2.0.CO;2

Pruppacher, H. R., & Klett J. D. (1997). Microphysics of Clouds and Precipitation, 2nd edition, Kluwer Academic Publishing, Dordrecht, pp. 954.

Spyers-Duran, P. (1974). Cloud condensation nuclei measurements and estimates of production rates in the St. Louis urban complex. Preprints, Fourth Conf. on Weather Modification, Ft. Lauderdale, FL, Amer. Meteor. Soc., 390–395.

Storer, R. L., van den Heever S., & Stephens G. L. (2010). Modeling aerosol impacts on convective storms in different environments. J. Atmos. Sci., 67, 3904-3915.

Trapp, R. J., Diffenbaugh N. S., Brooks H. E., Bladwin M. E., Robinson E. D., & Pal J. S. (2007). Changes in severe thunderstorm environment frequency during the 21st century caused by anthropogenically enhanced global radiative forcing. Proc. Nat. Acad. Sci., 104, 19719-19723. doi: 10.1073/pnas.0705494104

_____, _____, & Gluhovsky A. (2009). Transient response of severe thunderstorm forcing to elevated greenhouse gas concentrations. Geophys. Res. Lett., 36, L01703. doi:10.1029/2008GL036203.

Trenberth, K. E., Dai A., Rasmussen R. M., & Parsons D. B. (2003). The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 1205–1217.

Twomey, S. (1976). Computations of the absorption of solar radiation by clouds. J. Atmos. Sci. 33, 1087-1091.<1087:COTAOS>2.0.CO;2

_____, & Wojciechowski T. A. (1969). Observations of the geographical variation of cloud nuclei, J. Atmos. Sci., 26, 648 651.<648:OOTGVO>2.0.CO;2


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.